Librairie Blanche

Pseudogroupes de lie transitifs, tome 1

par Claude ALBERT, Pierre Molino

Structures principales

Crédits & contributions

EAN

Prix TTC

32,00

Sur commande

Titre disponible chez l’éditeur, commande possible sur demande.

La Théorie des pseudogroupes de Lie remonte essentieélément à l'oeuvre d'Élie Cartan. Elle joue un rôle essentiel dans l'étude des structures géométriques différentiables (structures homogènes, structures complexes, feuilletages, etc.) et dans l'analyse globale sur les variétés, en particulier la présentation intrinsèque des systèmes d'équations aux dérivés partielles. En utilisant les notions d'espaces fibrés et de jets dues à Charles Ehresmann, les auteurs donnent une présentation moderne de ces Théories et font le point sur le problèmes d'équivalence ; ils offrent ainsi un exposé général de la Théorie des pseudogroupes transitifs. Les notions présentées, qui ont leur intérêt propre, s'avèrent les outils de base de la géométrie différentielle contemporaine. Tome II. Théorèmes d'intégrabilité Le second volume est consacré au problème d'équivalence et donne une démonstration détaillée de deux résultats, dont l'un réalise un retour aux objectifs que fixaient la Théorie des pseudogroupes de Lie ses fondateurs, S. Lie et E. Cartan. Collection Travaux en Cours ISBN à 7056 6055 à - 13 euros.